

8th INTERNATIONAL PLANETARY PROBE WORKSHOP Portsmouth, Virginia on June 6-10, 2011

EUROPEAN GNC TECHNOLOGY DEVELOPMENT AND PERSPECTIVES FOR AIRLESS BODIES EXPLORATION

Augusto Caramagno

DEIMOS Space S.L.U., Spain

Introduction

- GNC perspective of an airless body mission
- GNC roadmap and development status
- Summary and conclusions

Introduction and objective

- ESA Science and Exploration Programmes include:
 - Lunar Lander
 - Planetary moons
 - Mission to asteroids (e.g. NEO) with or without sample return
- Summary of the lecture
 - Industrial perspective of Guidance, Navigation and Control (GNC) technology for airless body missions
 - European capabilities and maturity status are presented
 - Survey is not meant to be exhaustive but detected relevant capability in LSI, medium, SME and Research Centers.
 - Innovation in methods and techniques as well as GNC solutions development
 - Gap analysis aimed to identify the future needs and strategies to reduce cost and time towards mission implementation decision.
- Acknowledgment to ESA for the information provided on GNC technology developments status and roadmap

GNC perspective of an airless body mission

Airless body mission characteristics

- Mission to airless bodies can be clustered under a set of similar GNC requirements and drivers (D&L Phase):
 - The absence of atmosphere represents the major difference with respect to EDL GNC.
 - GNC must autonomously and safely reduce the arrival or orbital velocity down to values compatible with landing system dynamics.
- Within airless body missions
 - Distinction between mission to major and minor bodies drives the strategy for mission design and D&L dynamics
 - The chain of nominal and off-nominal GNC modes depends on the expected operations:
 - approach for rendezvous and orbiting
 - Descent and landing phase
 - Intentional impact (e.g. NEO deflection missions)
 - Planetary body departure for sample return missions.

Reference mission: ESA Lunar Lander programme

Trajectory Phase	Typical Duration
Low Lunar Orbit (LLO)	
Coast	50-60 min
Braking	10-15 min
Approach	2-3 min
Terminal Descent	< 0.5 min

Lunar Lander: Descent & Landing Scenario

Lunar Lander: accuracy goal

Landing Accuracy Requirements

GNC roadmap and development status

GNC Technology issues and roadmap

GNC design issue:

- Achieving a design implementing heterogeneous, short duration and fast dynamics phases through a robust combination of onboard functions
- Optimized and complementary equipment set
- Need to contain the uncertainties/risk associated to the selection of technology at different TRLs

GNC Roadmap guidelines

- Mission and GNC design as a multidisciplinary problem
- Adopt innovative solution for GNC methods and techniques since initial design stages
- Focus investment on critical technology that need to be matured on time with respect to programme phases
- Use validates models tools, testbench and facilities

GNC/AOCS Functional Scheme

- Combination of action in two perpendicular directions:
 - Explot results from Innovation and research activities
 - Engage into Critical GNC technology developments

- Innovation and research activities
 - GNC Design and Analysis Methods
 - Multidisciplinary optimisation
 - Modelling Framework
 - Control Analysis and Design Framework
 - GNC control design V&V methods
 - G-N-C Algorithms and Techniques
 - Guidance schemes
 - Estimation and Filtering
 - Robust Control techniques
 - FDI / FTC (adoption for robotic mission to be assessed)
 - Optimum (E)DL and GNC Design

- Critical GNC technology developments
 - Vision Based Navigation solution
 - Lidar based Navigation solution
 - GNC/Hazard Detection and Avoidance
 - (E)DLSimulation Frameworks
 - Synthetic planetary scene generation SW
 - Dynamic Test Facilities

Progress and plans time-frame 2009-2013 →

Critical GNC technology developments

Critical GNC technology developments

Navigation for Planetary Approach and Landing (NPAL)

Background

- Lunar landing technology development
- Initially conceived for Mercury lander on Bepi Colombo

Achievements

- Vision-based navigation camera breadboard, with commercial optics
- Real-time FEIC and Navigation SW
- VBNC flight model detailed design
- Validation and verification simulation tools: VBNAT and PANGU
- TRL: 4-5

Main features

- Optical navigation based on unknown feature points extraction and tracking
- Autonomous star tracker components (APS, CPU, electronics) used for VBNC

Test approach

PLGTF field tests

Multi-mission Vision based Navigation System (VisNav)

Objectives

 Vision-based navigation system modular architecture suitable for planetary landing, space rendezvous, interplanetary navigation and rover applications

Modular architecture consisting of:

- camera optics/electronics
- IP board
- OBC (navigation software)

VisNav Image Processing (IP) board functional architecture – Rover as an example

Vision based Navigation for Pinpoint Landing

Objectives

- Absolute position and surface-relative velocity using global/local features during the proximity operation of a planetary mission
- Validated the candidate algorithms (TRL: 3) for both Moon and NEO descent & landing scenarios

Vision based Relative Navigation Framework

Achievements

- Designed a complete hazard avoidance system, and successfully tested in VBNAT for Mercury landing scenarios
- Demonstrated IP algorithm robustness: meaningful hazard maps obtained in bad illumination conditions
- Designed and validated an E-guidance law with re-targeting capability (fuel, visibility, thrusters and trajectory constraints)
- Assessed real-time performances of IP and GNC critical functions
- TRL: 3

Main features

Uses NPAL camera as main sensor for HM

Next step

HA demonstrator experiment development

Vision based Hazard Avoidance System Experiment

Objectives

- Prepare a vision based Hazard Avoidance demonstrator experiment
- Perform PLGTF field tests in Morocco
- TRL: 5-6

Main Features

- Navigation and HA embedded SW running on two dedicated computer boards
- Reinforced NPAL camera + Experiment Computing Box (ECB) + imaging recorder

Achievements/StatusOngoing robustness performance consolidation of the HA demonstrator functional prototype (Lunar Lander scenario)

Intelligent Mathematical Processing for Efficient Site Selection

Objectives

- Formalize, develop and implement a novel fuzzy multi-criteria decision making (MCDM) algorithm for safe landing site selection
- Validate the baseline MCDM algorithm for both Mars and Moon landing scenarios
- Carry out performances benchmarking against previous reference solutions

Main Features

Genetic approach implementation required for CPU load constraints

Lidar based GNC for Safe Landing (LiGNC)

Achievements

- Scanning Lidar functional specifications and preliminary design
- Developed reusable guidance and control algorithms
- Adapted PANGU to Lidar and radar doppler sensors
- Demonstrated the end-to-end performance of a Lidar-based GNC system for safe landing (Mars)
- Assessed real-time performances of IP and GNC critical functions
- TRL: 2-3

Main features

 Scanning Lidar, inc. 3D map generation and motion compensation algorithm

Next step

Demonstrator experiment development

Imaging Lidar Technology Breadboard (ILT)

Objectives

- Develop, demonstrate and validate novel technologies for imaging lidar sensor (landing, rendezvous and rover applications)
- Manufacturé, integrate and test (static/dynamics) an Imaging Lidar breadboard
- TRL: 4

Achievements/Status

- Manufactured Imaging Lidar structural frame, scanning mechanism, PCB board, detector FPGA, etc. Performed functional and interfaces tests
- of the power board Difficulties with the manufacturing of the 1x256 array detector

Next Steps

- PLGTF field tests
- Landing Imaging Lidar Sensor EM: Design Phase

- 25 -

Imaging Lidar Technology Breadboard (ILT)

Objectives

Develop, demonstrate and validate novel technologies for imaging lidar sensor (landing, rendezvous and rover applications)

Achievements

- Selected Rendezvous as reference application. On-going integration and testing of a BB model For Mars landing application (TRL: 1-2)
- - Defined 3 concepts and selected a reference design (HW/SW) concept

Main features:

- Characteristics: multi-channel
- Transmitter: Fiber laser 4 x 4 kW @ 1550 nm
- Receiver: 1 x 80 mm aperture, 4-elements InGaAs APDs
- Scanning: gimbal-mounted mirror, FoV: 20° x 20°
- Mass: 3.2 kg (OHU) + 8.5 kg (EU) Power: < 100 W

- PANGU: Planet and Asteroid Natural scene Generation Utility
- Objectives of recent enhancement:
 - Enhanced lunar small scale features:
 small craters and boulders
 - Lunar Pole South DEMs from Clementine and radar data
 - Improve lunar surface reflectance
 - Add ground proximity effects: lander shadow and dust from thrusters
 - Better (and faster) rendering / Improved GUI
- Achievements/Status
 - European asset as Image Generator for vision based GNC
 - Lunar South Pole DEMs delivered

Entry And Guidance Landing Environment (EAGLE)

Objectives

- Simulation framework for the design, development and testing of (E)DLS GNC systems
- Reference mission templates:
 Pathfinder, MER, ExoMars, MSR, EVD and Surveyor

Main Features

- Model-based development, validation & verification based on open source and COTS software products
- Support to 4-steps verification process: MIL, SIL, PIL and HIL
- Avionics test bench based on dSPACE modular hardware and RASTA

Precision Landing GNC Test Facility (PLGTF)

Objectives

- Develop a cost effective landing GNC test facility emulating a lander vehicle dynamics
- Increase planetary landing GNC
 Technology Readiness Level up to 5-6
 - Vision-based navigation system
 - Lidar-based navigation system
 - Hazard avoidance system

Main Features

- Helicopter UAV for supporting scaled Martian and Moon landing sequences
- PC/104 stackable PCI modules from RTD: CPU, GPS receiver, etc.

Precision Landing GNC Test Facility (PLGTF)

Selected Mars (left) and Moon (right) landing site for the validation of the NPAL navigation system in Morocco

Scalable EDL GNC & Avionics System Demonstrator

Objectives

- Develop and mature to TRL 5 a scalable Autonomous Guidance, Navigation & Control (AGNC) system capable to bring safely and precisely valuable assets on the lunar surfaces
- Develop G-N-C building blocks, inc. FDIR and in-flight calibration functions
- Enhance EAGLE model-based DV&V process and associated chain tool
- Develop a complete demonstrator of the reference (E)DL AGNC system

Main Features

AGN&C system capability for both optical and non-optical measurements

Landing System Development

Background

 Lightweight landing leg for the MSR mission, with testing of a single leg

Objectives

- Design a landing system based on legs using Lunar Lander as reference mission
- Conduct pre-development testing, e.g. at material/component/simplified system level, to confirm feasibility
- Design, manufacture and test a complete breadboard (with all the legs attached to the platform) in support of design and modelling activities (e.g. LAMA facility)

Main Features

 Stepwise approach to build confidence in methodology, design choices and validation of the models

Lunar lander GNC technologies summary

Technology Building Blocks (TRL 6 by 2013)

Summary and conclusions

 A mission to an airless body represents a challenge for GNC design and technology development planners.

Needs and gaps:

- Close interaction Mission/System and GNC design, adopting results of innovation in methods and techniques
- Development and availability of validated set of models
- Need of investment in test facilities and ground demonstrators accessible to major stake holders in a programme
- Real planetary imagery is essential for GNC design validation
- Possible use of fligth data from one mission to another for tuning and validation of models and prediction tools.

Conclusion:

- A relevant effort has been devoted by ESA and its industry in the last years to close most critical technology
- The analysis performed detects a high level of compentence and GNC technology maturity to timely achieve the TRL6 in 2013 for the Lunar Lander implementation decision.